
Headlock Documentation
Release 0.5.0

Robert Hölzl

Dec 31, 2020

Contents:

1 About 3

2 Getting Started 5
2.1 Requirements . 5
2.2 Installation . 5
2.3 Usage . 6

3 User Manual 7
3.1 C/Python Proxy Objects . 7
3.2 The Testsetup . 12
3.3 Bridging Function Calls Between C And Python . 14

4 Reference 17

5 Current Status Of Development 19
5.1 Bugreports/Pullrequests . 19

i

ii

Headlock Documentation, Release 0.5.0

headlock is a python/C bridge with automatic binding generator and focus on testing C code from python. For a
more complete feature summary refer to About.

• Current Version: 0.5.0

• PyPI: https://pypi.org/project/headlock

• Git Repository + Issuetracker: https://github.com/mrh1997/headlock

• Documentation: https://headlock.readthedocs.io

Contents: 1

https://pypi.org/project/headlock
https://github.com/mrh1997/headlock
https://headlock.readthedocs.io

Headlock Documentation, Release 0.5.0

2 Contents:

CHAPTER 1

About

Headlock is designed as an adapter for testing C code via tests written in python. When being combined i.e. with
pytest it provides a very powerful and convenient way of writing (unit-/integration-) tests for C code.

This results in differents goals when being compared to other (excellent) C/Python bridges like ctypes, cffi, swig,
cython, . . . :

• All the extra steps usually required for C are done under the hood. For the user adding a C file to a project is as
simple as adding a python file. These steps done by headlock include:

– No need to create extra Makefiles/Buildscripts for unit testing a single C module

– No need to run extra build steps before using the C code.

– No need to rewrite the C moduels interface definition (the header file) in Python.

• Provide a simple, intuitive API for accessing C objects. The philosophy of this API is to be as orthogonal as
possible and stick as near as possible to the corresponding C language operators/objects. Thus the effort for
learning it should be kept low.

• As being specially designed for unittesting, headlock includes support for typical testing tasks:

– mock the underlying C modules in Python without any line of extra wrapper code

– Vary not only the variables modifyable during runtime for testing corner cases but also the preprocessor
defines.

• Exceptions raised in python callbacks (or python mocks) are automaticially forwarded to the calling python
code by skipping the C-code-under-test via setjmp() in case of an exception.

• [PLANNED] Run the C code in a separate address space to guarentee real test isolation. This will not only
prevent a crashing test from crashing the whole test-runner, but especially avoids that a misbehaving Module
Under Test leaves the test process in an undefined state. Otherwise in the worst case this could cause one of the
following tests to return different results than when being run separately.

• [PLANNED] Test the same piece of C code compiled for 32bit and 64bit from within a single testrun. This
means it doesn’t matter what architecture your python testcode is running on. As the C code is running in a
separate Process it can control both variants, 32bit and 64bit.

• Especially make it work with embedded systems, so that

3

Headlock Documentation, Release 0.5.0

– [PLANNED] C code can be executed on destination hardware. This is primary useful for integration tests
as it allows to detect architecture specific problems (for non x86 hardware) and timing issues. Further-
more it allows to communicating with external components instead of mocking them which might show
problems that where hidden by the mocks.

– development of (non-device-driver) embedded C code can be done (via unittest) on a PC without the need
to struggle with embedded hardware.

• Integrates well with Testing tools (like unittest, pytest, . . .)

• [PLANNED] Being ToolChain agnostic via a plugin infrastructure. This includes not only the compiler, but for
example on embedded systems also the infrastructure to load the firwmare into a device or communicate with it.

Explicitly Non-Goals Are:

• High Performance (This does not mean that it is slow. But if speed conflicts with one of the goals of this project,
there will be no compromises in favour of speed).

• Being self-contained (At least LLVM and a C-compiler will always be required to be installed).

• Support for Python < 3.6

4 Chapter 1. About

CHAPTER 2

Getting Started

2.1 Requirements

The following prerequisites are required by headlock and thus have to be installed before using it. Currently it is only
explicitly tested with the minimal version requirements. Higher versions should work nevertheless.

• Windows or Linux are required

• CPython 3 Version 3.6 or higher is required

• LLVM (Version 7.0.0 or higher).

• GCC is required (in case of Windows MinGW64 is needed). Later other C compilers shall be supported!

2.2 Installation

The easiest way to install headlock is from PyPI via pip. To Install the most up-to-date stable release (0.5.0) run:

pip install headlock

Alternatively one can install the latest development branch directly from the github repository via

pip install git+https://github.com/mrh1997/headlock.git

Attention: AVIRA and maybe also other virus scanners seems to delay loading DLLs compiled a moment ago by
multiple seconds (see this link). As this feature is essential for headlock, you must add you project directory to the
list of directories, that shall not be scanned by the realtime scanner. Otherwise the first instantiation of a testsetup
will require 10-30 seconds per run.

5

https://www.python.org/downloads/release
http://releases.llvm.org/download.html
http://mingw-w64.org/doku.php/download/mingw-builds
https://pypi.org/project/headlock/
https://github.com/mrh1997/headlock
https://hero.handmade.network/forums/code-discussion/t/2948-loadlibrary_very_slow

Headlock Documentation, Release 0.5.0

2.3 Usage

The following sample demonstrates the basic features of headlock. That is automaticially compile and load a piece of
C code (including mocking and prepocessor macros via command line) and calling it from python.

The following demo C code has 3 implementations for incrementing a given integer by the macro
INCREMENT_OFFSET (has to be set via compiler command line):

int increment(int number)
{

return number + INCREMENT_OFFSET;
}

void increment_inplace(int * number)
{

*number += INCREMENT_OFFSET;
return;

}

struct add_operands_t {
int op1, op2;

};
extern int adder(struct add_operands_t * ops);

int increment_via_extfunc(int number)
{

// adder_from_other_module() is not part of this file!
struct add_operands_t ops = { number, INCREMENT_OFFSET);
return external_adder(&ops);

}

Lets assume this code is stored in test.c and shall be tested from python. Then the following python file (in this
case in the same directory) will call the increment*() functions and test if their result is correct:

from headlock.testsetup import TestSetup, CModule

@CModule('test.c', INCREMENT_OFFSET=1)
class TSSample(TestSetup):

pass

ts = TSSample()

test increment():
assert ts.increment(10) == 11

test increment_inplace()
int_var = ts.int(10)
ts.increment_inplace(int_var.adr)
assert int_var == 11

test increment_via_extfunc()
ts.adder_mock = lambda ops: ops.op1 + ops.op2 # mock required func
assert ts.increment_via_extfunc(10) == 11

this call is recommended (although it will be done implicitly otherwise)
ts.__unload__()

6 Chapter 2. Getting Started

CHAPTER 3

User Manual

3.1 C/Python Proxy Objects

The basic building blocks in accessing C from python is a set of python classes that are used as proxies for C Data
object. These python proxy objects allow to run the same actions on the C Data objects but from python. Especially
they allow to convert the C Data Object to cross the language barrier by converting it to a corresponding python object
and vice versa on request.

These python proxy objects are required in headlock for getting access to:

• global C variables

• values returned by C function

• C Data Object allocated manually via C Type Objects

By far the most important feature of proxy objects is the .val attribute. This attribute is readable and writable. It
allows the C Data Object represented by the proxy to be converted to/from a corresponding python object. The type
of this python object depends on the type of the C Data Object (see C/Python Type Mapping).

Note: To avoid specifying .val on every read access, the proxy object classes are implementing most python op-
erators (where meaningful). Thus one can write for example <proxy-obj> + 4 != <proxy-obj> instead
of <proxy-obj>.val + 4 != <proxy-obj>.val. Note that this is all about convenience. Internally the
exactly same operations are run.

This is not the case when assigning. This means ts.<global-var> = 3 instead of ts.<global-var>.val
= 3 is not possible!

3.1.1 C/Python Type Mapping

When C Data Objects shall cross the language barrier they have to be converted to/from a matching python object.
Such a convertion can either done via the .val attribute or when creating an object by passing a python object as first

7

Headlock Documentation, Release 0.5.0

parameter into the constructors of C Type Objects. This chapter specifies the python objects that can be passed to/from
python proxies in dependance of the underlying C Data Objects.

Please note that depending on the underlying C type most proxies accept multiple python types to be converted to C
while they return always the same python type. The detailed mapping between C Data Objects and the python objects
is listed in the following table. Please note that the first python type (marked as “default”) is the type returned when
retrieving the .val attribute.

8 Chapter 3. User Manual

Headlock Documentation, Release 0.5.0

C Type Python Type of <proxy>.val attribute

• (un)signed char
• (un)signed int
• (un)signed short
• (un)signed long

• int (default)
• ByteLike of size 1 (translates to the corre-

sponding ASCII code)
• str of size 1 (translates to the corresponding uni-

code point)

_Bool
• bool (default)

Pointer (*)
• int (default): corresponds to the address of the

C object
• Array proxy object: When passing an ar-

ray proxy to a pointer, the pointer is initialized
with the address of the C array (corresponds to
casting a array to a pointer in C).

• Iterable (i.e. list or tuple): same behaviour
as when assigning an iterable to an array (see Ar-
ray). Please note that it is also possible to assign
an iterable to a pointer to void (void *). In this
case the elements of the array are assigned byte
by byte to the memory referred by the pointer.

Function Pointer(*)
• int (default): corresponds to the address of the

underlying function.
• callable: A python function that shall be

wrapped as C pointer

Array ([])
• Iterable (list is default): Maps the ele-

ments of the iterator element by element to the
proxies of the elements of the array. Thus p.
val = [x, y] is identical to p[0].val =
x; p[1].val = y

Structure (struct)
• Mapping (dict is default): Every entry in

the Mapping is mapped to the member in the
C struct with the same name. Thus s.val =
{ a: x, b: y } is identical to
``s.a.val = x; s.b.val = y. When
assigning a python mapping to .val and the
python mapping does not contain all entries of
the C struct, the missing entries are set to the
null-value of the corresponding type.

• Iterable: The elements if the iterater are
mapped to the members of the struct in their defi-
nition order. I.e. lets assume the following defini-
tion: struct { int a, b };. In this case
s.val = (x, y) is identical to s.a.val =
x; s.b.val = y. When assigning a python
iterable to .val and the C struct contains more
members then the iterable provides, the remain-
ing members are set to the null-value of the cor-
responding type.

.

3.1. C/Python Proxy Objects 9

Headlock Documentation, Release 0.5.0

Note: Additionally to the python types listed in the table a proxy object can be mapped to a C Data Object of the the
same type. This means that you can do <int-proxy>.val = <other-int-proxy> which is an confinience
feature that translates internally to <int-proxy>.val = <other-int-proxy>.val.

Note: apart from .val there are object convertion attributes for special cases. Currently the following attributes are
implemented:

• .c_str (arrarys and pointers): convert a zero-terminated C string to/from a bytes object

• .unicode_str (arrarys and pointers): convert a zero-terminated wide-string to/from a python str object.
Depending on the type of the underlying object this string has to be utf8 (pointer to 8-bit items), utf16 (pointer
to 16-bit elements) or utf32 (pointer to 32-bit elements) encoded.

• .tuple (structures): enforce the python object to be set/retrieved as a tuple object (using basicially the same
mapping as when setting .val to a tuple).

3.1.2 C Type Objects

Every C type is represented by a corresponding python class which is bound to the execution environment of The
TestSetup. It can be used to allocate and initialize a new C Data Object within this execution environment by calling
it (i.e. ts.short()). The return values are C/Python Proxy Objects that are referring to the created C Data Object.
When calling the C type class it is possible to pass a value (i.e. ts.short(9)). This python object will be converted
to the corresponding C value according to C/Python Type Mapping, that in turn is used to initalize the created C Data
Object.

Please note that when creating a proxy object manaually via the approach described above, headlock will handle full
memory management. That means the created C Data Object has the same live cycle as the python proxy and will be
released automaticially when the python object is released.

Note: This includes also memory buffers that are allocated implicitly when passing a iterable to a pointer.

Apart of the instatiation of C Data Objects the following attributes/operators are available in the python class to
simulate C operators:

10 Chapter 3. User Manual

Headlock Documentation, Release 0.5.0

Python At-
tribute/Operator

C Op-
erator

Description

<type-proxy>.
ptr

typedef
<type>

* ..
.

Creates a pointer type that points to a <type> object

<type-proxy>.
array(<size>)

typedef
<type>
...
[<size>]

Creates an array type that refers to a C array of <type> object

<type-proxy>.
alloc_array(<size>)
<type-proxy>.
alloc_array(<list>)

<type>
...
[<size>]

Creates an array object proxy that refers to a C array of <type> object. The created
array object is either initialized with null_val’s (if only the arrays size is specified),
or it is initialized by the passed iterable. In case an int is specified this is a shortcut
for t = <type-proxy>.array(<size>); o = t(). In case an iterable is
specified this is a shortcut for t = <type-proxy>.array(len(<init>)) o
= t(<list>).

<type-proxy>.
alloc_ptr(<size>)
<type-proxy>.
alloc_ptr(<list>)

<type>

* ..
. =
malloc(<size>)

This is analoguous to .alloc_array. The only difference is, that it does not return
the array object itself, but a pointer to it. Furthermore it works on void, in which
case the base element is one byte (thus ts.void.alloc_ptr(3) will return a
ptr to a 3 byte buffer).
The returned pointer object manages the arrays lifecycle, which means that the array
will be released automaticially when the pointer is released.
Usually this operator is used to allocate a memorybuffer from within python.

<type
proxy>.
sizeof

sizeof(<type>)returns the size of the Type proxy in bytes

As described in chapter The Testsetup when creating a testsetup all custom C type objects representing the C types
from the MUT will be added to the created testsetup class as attributes.

Furthermore the build in C types are always available in the testsetup. Where required spaces are replaced by under-
scores:

• ts.char

• ts.signed_char

• ts.unsigned_char

• ts.short

• ts.signed_short

• ts.unsigned_short

• ts.int

• ts.signed_int

• ts.unsigned_int

• ts.long

• ts.signed_long

• ts.unsigned_long

• ts.void

3.1. C/Python Proxy Objects 11

Headlock Documentation, Release 0.5.0

The .ptr and .array operator allow to create new types on the fly. If you want to create a C type “array of 10 pointers to
int” you simply run ts.int.ptr.array(10).

3.1.3 Proxy Operators

Apart of the .val attribute the following attributes/operators are available in the python proxy to simulate C operators:

Python At-
tribute/Operator

C Operator Sample

<proxy>.adr & <var> Returns a pointer proxy to the given <var>
<ptr-proxy>.
ref

* <ptr> Resolves the pointer <ptr> and returns the
proxy object referred by <ptr>

<array/
ptr-proxy>[<ndx>]

<array/ptr>[<ndx>] Returns a Proxy that corresponds to the
<ndx>th array/pointer element

<struct-proxy>.
<membername>
<struct-proxy>["<membername>"]

<struct>.<member> Returns a proxy to a member of a
struct/union. If <membername> conflicts
with a python buildin-name the “[]” oper-
ator can be used instead of the “.” operator.

<proxy>.sizeof | sizeof(<var) | returns the size of the Object
| proxy in bytes

<ctype-proxy>(<proxy>) | <ctype>(<cobj>) | casts a object to another type by
| creating a new one.

3.1.4 Direct Memory Access

A further way of accessing the underlying C data object of a proxy is doing direct memory access instead of the C
representation of the data. For example when creating a C int on a 32bit architecture, 4 bytes of memory will be
reserved. These 4 bytes can be accessed bytewise via the .mem attribute. The mem attribute returns a CMemory
object, which can be used to read and write any part of the underlying memory as bytes object via the slice operator.
I.e. i.mem[:2] returns the first two bytes of the underlying memory.

As assignment of a ByteLike object to .mem or comparison of a ByteLike object to .mem are very common
actions, the following simplifications are allowed for convenience:

• i.mem = b'test' instead of v = b'test'; i.mem[:len(v)] = v

• i.mem == b'test' instead of v = b'test'; i.mem[:len(v)] == v

3.2 The Testsetup

One core concept of headlock is the testsetup. A testsetup covers:

• module(s) under test (MUT): one or multiple C file(s).

• custom C macro definitions, that were applied when compiling the C code

• python mocks that emulates missing C modules on which the MUT is relying

• an interface to the MUT’s implementations (functions, global variables) as C/Python Proxy Objects and its
interface (typedefs, struct/enum/union declarations) as C Type Objects. Of course also macro defintions are
available as far is they do not use too much preprocessor magic.

12 Chapter 3. User Manual

Headlock Documentation, Release 0.5.0

• [PLANNED] an environment (after instantiation) where the modules under test are executed. This is usually a
separate process to avoid that buggy C code is interfering with the python code or the other C modules. But an
environment might even be another machine or embedded processor.

One may define any number of testsetups per python file. Even of the same C file but i.e. with different preprocessor
settings or different mocks. Furthermore one may instantiate every testsetup multiple times (even in parallel for
example to simulate a network [PLANNED]).

In headlock a testsetup is represented by a python class which is derived (direct or indirect) from headlock.
testsetup.TestSetup. It is even possible to use headlock.testsetup.TestSetup directly as play-
ground (where no C code is required, but only to to interact with the testsetups environment/address space):

from headlock.testsetup import TestSetup

ts = TestSetup()
ptr = ts.char.ptr(b'HELLO WELT\0') # create buffer with HELLO WORLD
print(ptr.c_str) # print content of this buffer

The decorator headlock.testsetup.CModule() adds one or multiple Modules Under Tests (C-files) to a
testsetup. Headlock implements this by deriving the decorated class into a class of the same name. This new class
contains all functions, globals variables, types, defines of the C modules:

• All typedef (as well as the buildin C-types) are added as C Type Objects. These python classes can be used to
retrieve information about the type. As soon as the C-code is loaded these proxies can also be used to instantiate
C objects of the corresponding type.

• struct/union/enum custom types are handled the same way as typedefs. But as they are in a different namespace
(like in C). This is why they are not directly attributes of the testsetup object but have to be accessed via .
enum.<name>, .struct.<name> or .union.<name>).

• Preprocessor defines are translated to python variables / functions when possible. If the C code cannot be
translated to python code (i.e. due to preprocessor magic) the testsetup will nevertheless be created. But when
accessing the corresponding macro a ValueError will be thrown.

• Global variables and functions are available as C/Python Proxy Objects as soon as the C-code is loaded.

After class creation one has access to every preprocessor define. Via the C Type Objects of typedefs, global variables
and functions one can even do introspection of C modules without instantiating the testsetup class!

When instantiating a testsetup object the first time it will automaticially compile and link all C modules referred in
CModules. For further instantiations the built binary will be reused (until the python script is restarted):

from headlock.testsetup import TestSetup, CModule

@CModule('module1.c', '../module2.c', MACRO1=1, MACRO2=None)
class TSSample(TestSetup):

pass

ts = TSSample()
print(ts.mod1_var.c_str()) # content of module1's global var mod1_var
ts.__unload__() # this call is not needed but recommended

In the above sample module1.c and ../module2.c are compiled with the command line parameter “-
DMACRO1=1” and “-DMACRO2”. Please note that all C-file paths are relative to the directory of the python file
of the testsetup. In this example the pyton file resides in a subdirectory of the corresponding C module (due to the
directory prefix ..).

When the testsetup object is not needed any more it is recommended to run headlock.testsetup.TestSetup.
__unload__(). Although the __del__() method will call the __unload__() method implicitly, this is not a
guaranteed approch.

3.2. The Testsetup 13

https://docs.python.org/3.3/reference/datamodel.html#object.__del__

Headlock Documentation, Release 0.5.0

Testsetup derived classes that want to run initialization routines that are relying on C code/mocks should not run this
code in the __init__() method but use the __startup__() method for this purpose. This ensures that

• the testsetup is comletely initialized when the first C routine is called.

• running the initialization routines can be separated/delayed on demand

As __startup__() can be used to add custom initialization code, __shutdown__() should be used to run
custom deinitialization code. It will be called implicitly by __unload__() if there was a call to __startup__()
and the __shutdown__() method was not called already before.

For convenience it is possible to use the testsetup as contextmanager (which returns the testsetup object itself). This
contextmanger ensures that __startup__() is called at the beginning of the context (if not called already) and
__unload__() at the end:

with TSSample() as ts:
ts __startup__ was called and __unload__ will be called

Note: By convention testsetup classnames always start with the letters TS. Furthermore headlock uses the name
ts everywhere a instantiated testsetup is referred. This is also the case for the self parameter of methods of the
testsetup! This is also the case for this documentation.

3.3 Bridging Function Calls Between C And Python

One of the main goals of headlock is to provide seamless integration of calling C functions from python and vice
versa. Therefore calling C functions from python is as simple as calling python functions. The same is true if the C
code calls a function that is not part of the testsetup (the C modules of your testsetup relies on a C modules which is
not included into the testsetup).

3.3.1 Calling C Functions From Python

Headlock will add C/Python Proxy Objects for all C functions implemented in the MUT of the testsetup. Anyone of
these proxy object is a callable that accepts proxy objects as parameters and forwards them to to the underlying C
function. As it knows all parameter types and the return type (see chapter C Type Objects) it ensures that all passed
parameters that are not proxy objects are casted automaticially to a corresponding temporary proxy object that lives
for the time of the function call. If casting is not possible or a proxy of wrong type is passed a TypeError/ValueError
is raised. This implies that the rules for casting are identical the the convertion rules for the .val attribute (see chapter
C/Python Proxy Objects)

For example when calling a function that gets an pointer to a list of integers one can simply write:

ts.c_func([1, 2, 3])

This will cast the list [1, 2, 3] to an int array proxy object by passing it to the C type object of the first parameter.
The C type object will create a proxy object including allocating and initializing the corresponding C int array. (A
Pointer to) this C int array will be passed to the C function. After the function returned the created proxy object will
be released and thus the C int array will also be released. This works also, if c_func requires a more complex data
structure (i.e. an array of array of structs).

The above example is very convenient but can be only used for input parameters. To return data from the C function
via output parameters (pointers) an already existing proxy object has to be passed. Otherwise the returned value will
be destroyed immediately after the C function returned. The following code demonstrates how to return an integer via
parameter:

14 Chapter 3. User Manual

Headlock Documentation, Release 0.5.0

int_obj = ts.int() # create integer that will hold the returned value
ts.c_func(int_obj.ptr) # pass pointer to this int to c_func
assert int_obj == 123 # process the returned value

The object returned on calling a function proxy object is always a proxy object. The only expection are functions of
return type void, in which case None is returned.

3.3.2 Function Pointers

Function pointers can wrap either C function or python callables. As for data pointers there is a C data object and a
python proxy object for every function pointer. Thus a function pointer allows both directions of bridging:

• Pointer to C functions

Apart from running func_ptr = ts.func.ptr to get a pointer proxy to a C function‘‘func‘‘ one can
instantiate the function pointer type object by passing the address of a C function to it. Usually the latter is
not done explicitly but implicitly when receiving a function pointer object from the C code (i.e. func_ptr =
ts.get_pointer_to_func(), where get_pointer_to_func is a C function that returns a function
pointer).

The returned proxy is a callable, that can be called from python like any function object. Of course it can be also
passed to any C function or C global variable that requires a function pointer (as the .val attribute corresponds
to the address which is passed to the function/variable then)

• Pointer to Python functions

Get a function pointer that refers to a python functions and is callable from c is as simple as passing the python
callable to a function pointer type object. This will create a C wrapper, that can be passed around to C func-
tions/variables. When the wrapper is called from C it will bridge the call to the python callable.

Please note that all parameters passed to the C wrapper are encapsulated into python proxies by the bridge. This
means when the python callable which is backing the proxy object is called, all its parameters are python proxy
objects. The return value of the python callable will be also cast automaticially to a python proxy object if it
returns a standard python object instead of a matching proxy.

Attention: In contrary functiom pointer proxies of C functions this case requires more careful resource
management. The reason is, that the proxy object for python functions creates (and manages) the wrapper
object that bridges between C and python. Thus you have to ensure the proxy object is not released (aka
keep at least one reference to it) as long as a C function could call the wrapper.

3.3.3 Mocking C Function

When creating a testsetup with C modules that refers to other C modules which are not part of the testsetup headlock
will automaticially creating function stubs. These stubs are very useful as they ensure that the testsetup compiles (al-
though C function implementations are missing). In fact a stub will be generated for any non-static function declaration
where no corresponding function implementation is found.

This works out already perfectly as long as no C or python function is calling the stubbed C functions. This is required
in tests that are testing parts of the Module Under Test for which the stubbed functions are not relevant).

If the Module Under Tests requires one of the stubbed functions it is as simple as adding a python function with the
same name but the postfix “_mock” to the testsetup class. Every call to the corresponding C function is bridged to this
python function. As done when calling Python Function Pointers all parameters are wrapped into the corresponding

3.3. Bridging Function Calls Between C And Python 15

Headlock Documentation, Release 0.5.0

proxy objects when calling a mock function. The same rule applies to the return value of the mock function, before
being passed back to the C function.

Note: Please note that for every mocked C function there are two function objects in the testsetup. One with the
exactly same name as the C function and one with the postfix _mock. The first one can be used to call the latter one
from python ensuring that the same automatic proxy encapsulation rules apply as when calling the function from C.

I.e. given the function signature int func(int). When calling ts.func(1) will forward the to ts.
func_mock(ts.int(1)). If this one returns 2 the result will be encapsulated into ts.int(2) before being
returned by ts.func. This guarantees that when testing the mock functions from python they are working the same
way as when being called from C.

What is making headlocks mocking really powerful is the fact, that there is no special magic bit it is totally conform
to pythons semantic for methods. This means:

• you can derive the Testsetup class and add/overwrite mocked methods. The derived testsetup is usable like an
independant testsetup (different mock functionality although same C module):

@CModule('test.c')
class TSTest(TestSetup):

def test_func_mock(ts, param1, param2):
return param1 + param2

class TSTest2(TSTest):
def test_func_mock(ts, *params):

return 99

• you can mixin Mock-classes, that implements mocked functions for a specific underlying C module this is not
included in the testsetup but required by the MUT. This mixing could be reused for all testsetups relying on the
underlying C module.

class UnderlyingModuleMock(TestSetup):
def test_func_mock(ts, param1, param2):

return param1 + param2

@CModule('test.c')
class TSTest(UnderlyingModuleMock, TestSetup):

pass

• you can even add/replace mock functions after testsetup instantiation. I.e. one can utilitize the powerful
unittest.mock Module:

from unittes.mock import Mock

@CModule('test.c')
class TSTest(UnderlyingModuleMock, TestSetup):

pass

ts = TSTest()
ts.test_func_mock = Mock(return_value=99)
ts.c_func_that_calls_test_func()
ts.test_func_mock.assert_called_once_with(3, 4)

16 Chapter 3. User Manual

CHAPTER 4

Reference

TBD

17

Headlock Documentation, Release 0.5.0

18 Chapter 4. Reference

CHAPTER 5

Current Status Of Development

Attention: The currently implementation of headlock is an alpha version. Although it is already in production
use at http://www.baltech.de it must be noted that the the API is not stable yet!

The current status of the project (preliminary limitations/not yet implemented features) is shown in the following list:

• Does not work on macOS

• Works only with GCC/Mingw64

• Requires LLVM

• Does not support specifying packing of structures in C sources (#pragma pack). As workaround it is possible
to specify packing on a per-C-file basis in the Testsetup.

• No Support yet for: * enum * union * float/double * calling/mocking inline functions

• Does not support running testsetups on external process / other machine / embdedded system

5.1 Bugreports/Pullrequests

Bugreports/Pullrequests can be provided via the page of GitHub Page of the project

19

https://travis-ci.com/mrh1997/headlock
http://www.baltech.de
https://github.com/mrh1997/headlock

	About
	Getting Started
	Requirements
	Installation
	Usage

	User Manual
	C/Python Proxy Objects
	The Testsetup
	Bridging Function Calls Between C And Python

	Reference
	Current Status Of Development
	Bugreports/Pullrequests

